

Leaflet for parents
 Calculation

$$
+-x \div
$$

Vocabulary

Addition and Subtraction

add, addition, more, plus, increase
sum, total, altogether
score double, near double
how many more to make...?
subtract, subtraction, take (away), minus, decrease
leave, how many are left/left over?
difference between
half, halve
how many more/fewer is... than...?
how much more/less is...?
equals, sign, is the same as
tens boundary, hundreds boundary
units boundary, tenths boundary
inverse

Multiplication and Division

lots of, groups of
times, multiply, multiplication, multiplied by
multiple of, product
once, twice, three times... ten times...
times as (big, long, wide... and so on)
repeated addition
array, row, column
double, halve
share, share equally
one each, two each, three each...
group in pairs, threes... tens
equal groups of
divide, division, divided by, divided into
remainder
factor, quotient, divisible by
inverse

This booklet has been created to help ensure that children:

* will develop good mental maths skills;
* will have a good understanding of the four operations: $+-\mathrm{x} \div$;
* will be taught consistently throughout the school to use efficient and reliable written methods for each operation;
* have written methods that will support them when they are unable to carry out a calculation mentally;
* will use a calculator effectively, using their mental skills to monitor the process. They will check the steps involved and decide if the numbers displayed make sense.

At Jessie Younghusband School, children are introduced to the processes of calculation through practical exploration and investigation.

Mathematics is made fun and relevant through the use of story and problem-solving to provide a real life context. Children are taught to decide and identify when mental methods can be used and when written methods are needed to support mental procedures.

This booklet outlines the main methods taught at Jessie Younghusband School to support the progression from mental to written methods for calculation.

What sort of thing would it also help the children to know?

- Awareness of the commutative law - I don't know 5×7 but I do know 7×5 - the answer will be the same.
- Nearby facts - I don't know 8×5, but can do $10 \times 5-10$.
- If they don't know how to multiply by 4 and 8 , they can scale answers up by repeated doubling.
- If they can't multiply by 5, they can x10 and then halve it.
- Partition where appropriate - e.g. 14×5 by doing 10×5 and then adding 4×5.
- Developing an awareness of whether an answer should be odd or even, as this will allow the chance to spot an unexpected mistake (for example if you add two odd numbers you will always get an even answer).
Progression in Calculations
Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Column methodregrouping	Make both numbers on a place value grid.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.			Start by partitioning the numbers before moving on to clearly show the exchange below the addition.
	\bigcirc \bigcirc				
	0000 +527	$\begin{aligned} &-\quad \theta \\ & \theta \\ & 0 \\ & \hline \end{aligned}$	\bullet	e	addition. $20+5$
		$\bullet \bullet \bullet$	\bullet		$\frac{40+8}{60+13}=73$
	Add up the units and exchange 10 ones				
	for one 10.	71	5		$\begin{array}{r} 536 \\ +85 \\ \hline \end{array}$
	\odot \odot 0 146	-	\bullet		move on, 621
					introduce decimals with the same number of decimal places and different. Money can be used here.
	Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.				$\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline \end{array}$
	This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.				$\begin{array}{llll} 11 & t: 1 & 1 \\ 2 & 3 & 3 & 1 \end{array}$
	As children move on to decimals, money and decimal place value counters can be used to support learning.				$\begin{array}{rrrrr} & 9 & 0 & 8 & 0 \\ 5 & 9 & 7 & 7 & 0 \\ + & 1 & 3 & 0 & 0 \\ \hline 9 & 3 & 5 & 1 & 1 \\ \hline 2 & 1 & 2 & & \end{array}$

Subtraction

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=12
$$ \& \[

$$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$
\]

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. |
| :--- |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& Put 13 in your head, count back 4 . What number are you at? Use your fingers to help.

\hline
\end{tabular}

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Draw bars to find the difference between 2 numbers. Count on to find the difference. Comparison Bar Models Lsa is 13 years add. Her sister is 22 years old. Fina the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	
Make 10	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	$13-7=6$ Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Doubling \& Use practical activities to show how to double a number. \& \begin{tabular}{l}
Draw pictures to show how to double a number.

Double 4 is 8

\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline Counting in multiples \& Count in multiples supported by concrete objects in equal groups. \& | |
| :--- |
| Use a number line or pictures to continue support in counting in multiples. | \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Repeated addition		There are 3 plates. Each plate has 2 star biscuits on How many biscunts are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96+3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28+7=4$ Divide 28 into 7 groups. How many are in each group?

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28+7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder. (8) (8) ((5) :	Complete written divisions and show the remainder using r .

Objectives from the National Curriculum that involve mental maths: recognising and using patterns and developing efficient mental strategies.

Year	Counting / Place Value	Addition and subtraction / multiplication and division
R	Recognise numeral 1-5, 1-10, 1-20 Count up to 4, 10, 20 objects from a larger group Count actions or objects that can't be moved Select the correct numeral to represent 1-5, 1-10, 1-20 objects Count an irregular arrangement of up to 5, 10, 20 objects Place numbers 1-5, 1-10, 1-20 in order Kogwo one more / one less that a number 1-5, 1-10, 1-20 objects Estimate numbers in a group	Add and subtract two single digit numbers counting on or back to find the answer Estimate numbers in a group
1	Count to and across 100, forward and backward, from any number Identify one more and less than a given number Count in multiples of 2, 5 and 10 Recognise place value in numbers beyond 20 by reading, writing, counting and comparing numbers up to 100 Read and write numbers to 100	Memorise and reason with number bonds to 10 and 20 e.g. 9+7=16, 16-7=9 Add and subtract one-digit and two-digit numbers to 20, including 0 Count in multiples of 2, 5 and 10 (develop patterns, like odd and even) Grouping and sharing small quantities to understand multiplication and division (doubling, simple fractions)
2	Count in steps of 2, 3,5 and 10 from any number, forward and backward Recognise the value of each digit in a two-digit number (T O) Estimate larger numbers using different representations, including number line Compare and order numbers from 0 to 100 using <,>, $=$ Partition numbers in different ways: $23=20+3$ and 10 + 13 Read and write numbers to at least 100	Recall and use multiplication and division facts for the 2,5 and 10 x tables = make connection between each Recognise odd and even numbers Recall and use addition and subtraction facts to 20 fluently and derive and use related facts to 100 Add and subtract numbers, using concrete, pictorial representations and mentally (2-digit and ones, 2-digit and tens, 2 two-digit, 3 1-digit numbers) Recognise and use inverse relationships

Year	Counting / Place Value	Addition and subtraction / multiplication and division
3	Count in multiples of 4, 8, 50 and 100 Find 100 more/ /ess than a number Recognise the place value of each digit in a 3-digit number, applying partitioning: $146=100+46$ and $130+16$ Compare and order numbers up to 1000 Count in ones, tens and hundreds up to 1000 Count up and down in tenths	Add and subtract numbers mentally including 3-digit numbers and ones, tens and hundreds Recall and use multiplication and division facts for the 3,4 and $8 \times$ tables Doubling to connect the 2,4 and $8 \times$ tables Develop efficient mental methods using commutativity and associativity $(4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240)$
4	Count in multiples of $6,7,25$ and 1000 Find 1000 more or less than a given number Count backwards through zero to include negative numbers Recognise the place value of each digit in a 4-digit number Order and compare numbers beyond 1000 Round any number to the nearest 10,100 or 1000 Count up and down in hundredths	Practise mental methods for addition and subtraction with increasingly larger numbers Recall multiplication and division facts for tables up to $12 \times$ Use place value, known and derived facts to multiply and divide mentally Recognise and use factor pairs and commutativity in mental calculations
5	Read, write, order and compare numbers to at least 1000 000 and determine the value of each digit Count forwards and backwards in steps of powers of 10 from any number Count forward and backward with positive and negative whole numbers Round any number to the nearest $10,100,1000,1000$ and 1000000 Count up and down in simple fractions and decimals	Add and subtract numbers mentally with increasingly larger numbers $12462-2300=10162$ Commit table facts to memory and use them confidently (factors and multiples) Recall prime numbers up to 19 and establish whether other numbers up to 100 are prime Multiply and divide numbers mentally drawing upon known facts, and those involving decimals, by 10,100 and 100
6	Read, write, order and compare numbers up to 10000 000 and determine the value of each digit ldentify the value of each digit in numbers given to three decimal places	Perform mental calculations, including mixed operations and increasingly large numbers Continue to use all the multiplication tables Multiply and divide numbers, including decimals by 10, 100 and 1000

The Use of Calculators

Specific objectives for the use of a calculator span Years 4, 5 and 6, but in the context of exploring numbers and the number system, calculators are used at Jessie Younghusband School with children in all age groups across the Foundation Stage, Key Stage 1 and Key Stage 2.

Basic calculator skills include recognising numbers and symbols, learning how to use a calculator and recognising when it is appropriate to do so. Later, calculators support the teaching of mathematics where the aim is to focus on solving a problem rather than on the process of calculation.

Using a Calculator Vocabulary

calculator, display, key
enter, clear, sign
change constant, recurring, memory, operation key

